Der neue Arduino-Clone „Schokuino“ wurde mir heute von den lieben Kollegen zum Abschied überreicht. Das Arduino-Logo mit den 2 x + gefällt mir auch besser als das Orginal. Welche CPU da wohl verbaut wurde? Bahlsen-CPU aus Hannover oder eine von Dauerbrot.de? Der Kuchen inkl. Leiterbahnen hat auch sehr lecker geschmeckt.
Da bleibt nach 7 Jahren kein Auge trocken 😉 Danke … keeping in touch …
Es gibt für Arduino eine Kommando Shell mit Namen Bitlash. Auch eine Anleitung ist auf Hompage des Entwicklers zu finden.
Hier die nötigen Schritte, um ein Arduino (Nano) damit zu bestücken.
Zuerst einmal die neueste Version (2.0) von bitlash installieren, dazu in das Libraries Verzeichnis von Arduino wechseln und per git die Neueste Version holen:
cd ~/Documents/Arduino/Libraries
git clone https://github.com/billroy/bitlash.git
Dann die Arduino IDE (1.5.2) starten und über das Menü: Datei-Beispiele-bitlash-Bitlashdemo das Beispiel Sketch laden, compilieren und auf den Arduino hochladen.
Wenn dann der Serielle-Monitor aufgemacht wird, ist es bei mir mit dem Nano abgestürzt.
Deshalb habe ich die Geschwindigkeit auf 9600 geändert. Hier das angepasste Beispiel Sketch: /** twbitlash.pde Thomas Wenzlaff http://www.wenzlaff.de Version 1.0 vom 31.08.2013
Beispiel einen einfachen Kommandointerpreter für den Arduino Nano. Basis Beispielprogramm von:
Bitlash is a tiny language interpreter that provides a serial port shell environment for bit banging and hardware hacking.
This is an example demonstrating how to use the Bitlash2 library for Arduino 0015.
Bitlash lives at: http://bitlash.net The author can be reached at: bill@bitlash.net
Copyright (C) 2008-2012 Bill Roy
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. **/
#include "bitlash.h"
voidsetup(void) {
// Initialisierung und setzen der Baud Rate 57000 bricht beim Nano ab // Startet den Kommandozeileninterpreter und führt den startup Makro aus
initBitlash(9600);
}
voidloop(void) {
runBitlash();
}
und dann läuft dieses Beispiel.
Nach öffnen des Seriellen Monitors in der IDE (1.5.2) erscheint: Bitlash Startbildschirm
Alle Kommandos lassen sich mit help anzeigen: Bitlash 2.0 Online Hilfe
Wie dann die erste Funktion erstellt wird, steht hier.
Kurz, um die LED 13 blinken zu lassen folgende Befehle eingeben:
function toggle13 {d13 = !d13;}
function startup {pinmode(13,1); run toggle13,1000;}
startup
boot
Funktionen lassen sich mit ls anzeigen: Erstes Beispiel
Die Länge ist 55 Zeichen lang.
Bei einer Messung alle 10 Sekunden mit 2 Sensoren ergibt das
55 x 6 x 2 = 660 pro Minute
das sind am Tag
660 x 60 x 24 = 959.400
im Monat
959.400 x 30 = 28.512.000
im Jahr
28.512.000 x 365 = 10406880000
das sind dann in MB
10.406.880.000 / 1.000.000 = 10406,88 MB
also in GB
10.406,88 MB / 1000 = 10,40688 GB im Jahr.
Das ist zuviel für einen 8 GB USB-Stick.
Wenn die Messzeit um den Faktor 100 verlängert wird, also alle 10 x 100 = 1000 Sekunden (alle 16 Minuten), müsste im Jahr
10,40688 GB im Jahr / 100 = 0,1040688 GB im Jahr anfallen,
das sind dann pro Monat:
0,1040688 GB / 12= 0,0086724 GB oder
0,1040688 GB / 1000 = 104,0688 MB pro Monat
Der Arduino (NANO) wird per USB an den TP-WR703N (12.09) angeschlossen. Wie kann nun von einem anderen Rechner darauf per TCP (Telnet) zugegriffen werden?
Dazu erst socat auf den WR703 installieren mit
opkg update
opkg install socat
Socate (Version 1.7.2.1) kann bidirektionale Verbindungen aufbauen. Es verbindet den USB Port mit dem TCP Port.
Dann das folgende Script erstellen start-temp.sh, und evl noch die Schnittstelle DEV und den PORT und BAUD anpassen.
#!/bin/bash
DEV=/dev/ttyUSB0
PORT=1234
BAUD=9600
while true; do
if [ -e $DEV ]
then
socat tcp-l:$PORT,reuseaddr,fork file:$DEV,nonblock,raw,echo=0,waitlock=/var/run/tty,b$BAUD
else
sleep 2
fi
done
und ausführbar machen mit
chmod +x start-temp.sh
Dann kann das Script mit ./start-temp.sh & im Hintergrund auf dem WR703N gestartet werden.
Nun kann von einem anderen Rechner mit telnet ip-adresse 1234 die Ausgabe ausgegeben werden.
Will man das das Script autom. beim hochfahren des WR703N startet, muss es noch in der /etc.rc.local eingetragen werden (aber vor exit 0). Das geht auch über Luci: Luci Startskripte
Wollte lange schon mal, zur Erinnerung an schöne Urlaube eine Markierung auf der Weltkarte anbringen wo wir waren. Als IT-Berater muss es dann aber schon eine Micro-Computer gesteuerte Version sein. Ein roter Punkt reicht da nicht.
Also hier das Ergebnis als Video, und weiter unten dann die Details:
Also so sieht die Weltkarte von vorne aus: Die Weltkarte in einem Bilderrahmen
Hier die Rückseite. Ein Arduino Mega wurde verwendet, weil der bis zu 60 Ausgänge hat, die einzeln angesteuert werden können.
Die ganze Rückseite, es fehlen noch die analogen Eingänge die als digitale Ausgänge geschaltet werden
An jedem besuchten Urlaubsort wurde ein 3 mm Loch gebohrt und eine LED reingesteckt. An einen Pin der LED wurde jeweils noch ein 220 Ohm Widerstand angelötet. Ja, es sieht etwas wild aus: An jede LED kommt noch ein Widerstand
Eine Nahaufnahme des Arduino Mega.
Ein Reed-Kontakt habe ich noch an einem Interrupt-Eingang des Arduino geschaltet, so kann man von vorne mit einem Magnet über den Null-Meridian fahren, und schon leuchten unsere TOP 3 Urlaubsorte (Hawaii, Tokio, Seychellen) permanent.
Reed-Kontakt für die TOP 3 Urlaubsorte
Hier das C-Programm, welches in den Arduino geflasht wird und die Ansteuerung durchführt.
Hochladen eines Testprogramms über einen „alten“ USB-Hub. Als Board muss in der IDE „Arduino Mega 2560 …“ ausgewählt werden und die Serielle-Schnittstelle muss ausgewählt werden. Die werden am Mac OS X nur angezeigt wenn das Gerät angeschlossen ist. Es ist auch eine andere wenn der USB-Hub angeschlossen ist, bei mir z.B. dev/cu.usbmodemfd1421, der ist aber auf jedem System anders.
Der Arduino Mega 2560
Der ATMega2560 R3 ist ein Microcontroller auf Basis des ATmega2560 mit diesen technischen Daten: Microcontroller ATmega2560
Operating Voltage 5V
Input Voltage (recommended) 7-12V
Input Voltage (limits) 6-20V
Digital I/O Pins 54 (of which 14 provide PWM output)
Analog Input Pins 16
DC Current per I/O Pin 40 mA
DC Current for 3.3V Pin 50 mA
Flash Memory 256 KB of which 8 KB used by bootloader
SRAM 8 KB
EEPROM 4 KB
Clock Speed 16 MHz
Durch das flashen des TP-Link TL-WR703N mit einem Image unbekannter Herkunft,
hatte das schöne Teil leider seinen Geist aufgegeben.
Es kann aber wiederbelebt werden, aber nur über die Serielle-Schnittstelle die nicht nach draußen geführt ist.
Also musste ich doch die drei Kontakte nach draußen führen. Nach dem öffnen des Geräts, und freilegen der Platine,
sind die drei Kontakte (TX, RX, Masse) schnell lokalisiert, dank der guten Fotos auf http://forums.openpilot.org/blog/52/entry-92-unbrick-wr703n-wifi-router/
Eine gute Anleitung ist hier zu finden
http://wiki.villagetelco.org/index.php?title=Building_a_Serial_Port_for_TL-WR703N
und auch
http://www.bitzof.me/doku.php?id=electronics:wr703n:unbricking
Das größte Problem dabei ist an die kleinen Kontakte, passende Drähte anzulöten. Die Kontakte sind wirklich nur ca. 0,4 mm klein. Gefühlt 0,0000001 mm.
Ein Kollege hatte noch den passenden Draht, der wirklich dünner als ein Haar ist und konnte mir einen Meter überlassen.
Also die Brille gesucht und es hat beim ersten Versuch geklappt.
Das war der komplizierteste Teil.
Um den Mac zu schonen, habe ich das flashen der neuen Firmware auf einen alten Windows-Rechner gemacht.
Was war nötig alles nötig?
1. Den seriellen to USB Adapter cf20… an den WR-703N anschließen:
PIN 4 TX an WR TX
PIN 5 RX an WR RX
PIN 6 GND an WR GND
Achtung! Nicht RX an TX und TX an RX .so wie sonst, dann klappt es nicht und das Terminal Fenster bleib schwarz.
2. Treiber für den cf20 von geladen.
Der Treiber richtet einen virtuell COM Port ein. Port in den Systemeinstellungen auf 115200/8/N/1/XON-XOFF stellen.
3. Putty laden und seriell Einstellungen auf: 115200/8/N/1/XON-XOFF
4. TFtp Server von laden und neue OpenWrt Firmware (openwrt-ar71xx-generic-tl-wr703n-v1-squashfs-factory.bin) in das Verzeichnis kopieren.
Habe den langen Namen noch gekürzt, in firm.bin. Install Verzeichnis des TFTP32 Server Einstellungen des TFTP Servers
5. Rechner IP Adresse setzten 192.168.1.100. Unter Netzwerkverbindungen-Lan-Verbindung-Allgemein-Eigenschaften-Internetprotokoll-Eigenschaften-Folgende-IP-Adresse verwedne-IP-Adresse.
Wichtig: Verbindung vom Rechner zum WR703N per Ethernet nicht vergessen!
6. Nach verbinden des WR-703N hat man max. 1 Sekunde zeit, im Terminal „tpl“ und Enter einzugeben um auf dem Prompt zu kommen.
Beim dritten Versuch hat es bei mir geklappt. Wenn hornet> angezeigt wird, hat man gewonnen.
Lösch Befehl
und warten bis alles abgeschlossen ist. Dann Enter drücken und der OpenWrt-Prompt mit OpenWrt-Logo erscheint.
8. Ethernet verbinden. Mit Telnet 192.168.1.1 verbinden und wenn der OpenWrt Prompt kommt,
das Passwort setzen mit passwd. Ab dann ist kein Telnet mehr möglich. Neu verbinden mit SSH.
9. Eine andere statische IP vergeben, die im Namensraum vom DNS Server des Internet Routers liegt vergeben.
10. Per SSH anmelden und das Netzwerk einstellen: /etc/config/network
config interface 'lan'
option ifname 'eth0'
option type 'bridge'
option proto 'static'
option ipaddr '192.168.2.123' # feste statische Adresse des Routers
option netmask '255.255.255.0'
option ip6assign '60'
option dns '8.8.8.8' # Adresse des Google dns, oder anderen
option gateway '192.168.2.1' # Adresse des gateway
reboot
Ethernet Kabel an Router anschließen. ping wenzlaff.de
muss erfolgreich laufen
11. Dann die Web-Gui luci installieren opkg update
opkg install luci luci-i18n-german luci-theme-bootstrap
12. Web Server starten /etc/init.d/uhttpd start
und damit es beim nächsten start automatisch läuft: /etc/init.d/uhttpd enable
13. Im Browser die feste statische Adresse aufrufen und anmelden mit User: root und den vergebenen SSH Passwort anmelden.
Mit dem Arduino kann leicht auch 230 Volt geschaltet werden. Dazu kann ein Relais an den digitalen Pin 7 und + VCC und – Masse verbunden werden.
In diesem Video kann man hören und sehen, wie das Relais alle 5 Sekunden an und wieder aus geschaltet wird.
Folgendes Sketch ist in den Arduino Nano hochzuladen. /*
TWRelais
Dieses Programm schaltet das Relais alle 5 Sekunden an und aus.
Thomas Wenzlaff 02.07.2013
Das Relais wir an den digitalen Pin 7 angeschlossen und VCC 5 V und Masse verbunden
Größe des compilierten Programm: 1108 Byte
*/
// An Pin 7 ist eine Relais angeschlossen,
const int RELAIS = 7;
// Die setup Methode wird nur einmal ausgeführt und bei reset
void setup() {
// Digitaler PIN 7 mit der RELAIS ist ein Ausgang
pinMode(RELAIS, OUTPUT);
}
Hohe Präzision: Low-Power-Modus, die Auflösung von 0.06 hPa (0,5 m)
Hohe linearen Modus mit einer Auflösung von 0.03 hPa (0,25 m)
Mit Temperatur-Ausgang
I2C-Schnittstelle
Temperaturkompensation
Reaktionszeit: 7,5 ms
Standby-Strom: 0.1 μA
Beseitigt die Notwendigkeit für einen externen Taktgeber
Größe: 21 x 15 x 10 mm
Die Platine mit dem BMP085 (auf GY-65) ist nur 1,5 cm x 2 cm klein.
Von oben: Luftdrucksensor von vorne
Von unten: Luftdrucksensor für Arduino
Anschlussbelegung: BMP085 Luftdrucksensor
Software:
Folgende beiden Libs von Adafruit downloaden und in das Lib Verheichnis kopieren. Evl. noch die Verzeichnisnamen umbenennen, da keine Sonderzeichen vorhanden sein dürfen.
Dies Programm liest den Luftdrucksensor und den Temperatursensor endlos aus, und gibt die Werte über die Serielle-Schnittstelle mit Leerzeichen getrennt aus. Kommentare beginnen mit #.
z.B. # Luftdruck und Temperatur Messprogramm # TWDruck 1.0 vom 06.07.2013 # http://www.wenzlaff.de # Sensor: BMP085 # Treiber Version: 1 # Unique ID: 10085
# [Luftdruck in hPa] [Temperatur in Grad Celsius] [Höhe in Meter]
Das BMP085 an: SCL an A5 SDA an A4 VDD Plus 3.3V DC Masse Minus */ constlong MESSINTERVAL = 5000; // Messintervall in milli Sekunden constlong SENSOR_ID = 10085; // eindeutige Sensor ID String KOMMENTAR = "# "; // Kommentar präfix String TRENNER = " "; // Trennzeichen der Werte
if (event.pressure)
{ Serial.print(event.pressure); // Luftdruck in hPa Serial.print(TRENNER);
/* Calculating altitude with reasonable accuracy requires pressure * * sea level pressure for your position at the moment the data is * * converted, as well as the ambient temperature in degress * * celcius. If you don't have these values, a 'generic' value of * * 1013.25 hPa can be used (defined as SENSORS_PRESSURE_SEALEVELHPA * * in sensors.h), but this isn't ideal and will give variable * * results from one day to the next. * * * * You can usually find the current SLP value by looking at weather * * websites or from environmental information centers near any major * * airport. * * * * For example, for Paris, France you can check the current mean * * pressure and sea level at: http://bit.ly/16Au8ol */
Serial.print(temperature); // Temperatur in Grad Celsius Serial.print(TRENNER);
/* Then convert the atmospheric pressure, SLP and temp to altitude */ /* Update this next line with the current SLP for better results */ float seaLevelPressure = SENSORS_PRESSURE_SEALEVELHPA; // 1013.25F Average sea level pressure is 1013.25 hPa
Serial.print(bmp.pressureToAltitude(seaLevelPressure,
event.pressure,
temperature)); // Höhe in Meter Serial.println();
} else
{ Serial.println(KOMMENTAR +"Sensor error");
} delay(MESSINTERVAL);
}
Mit diesen Daten, wird dieses Diagramm erzeugt:Luftdruck und Temperatur Diagramm mit gnuplot
Die gerade Linie im Diagramm, rührt daher das der PC sich automatisch in den Standby-Betrieb schaltet und damit die Serielle-Verbindung nicht mehr abgefragt wird.
Der dritte Wert der Daten ist die Höhe, die ändert sich nicht gross und wird deshalb nicht im Diagramm dargestellt. Wie wird bei gnuplot die 3. Y-Achse erzeugt? Geht das überhaupt?
Zuerst wurde der Temperatursensor in das Gefrierfach und dann in den Kühlschrank gelegt (grüne Kurve). Der zweite Sensor, wurde außerhalb des Kühlschranks platziert (die rote Kurve).
Temperaturverlauf im Kühlfach und Gefrierteil des Kühlschranks
Folgende gnuplot Datei ist dafür nötig:
set title "Temperaturverlauf im Kühlschrank" font "Times,18"
set ylabel "Temperatur in Grad/Celsius"
set xlabel "Messzeitpunkt am 26.06.13"
set xdata time # x-Achse wird im Datums/Zeitformat skaliert
set timefmt "%Y.%m.%d_%H:%M:%S" # Format Zeitangaben yyyy.mm.dd_hh:mm:ss
set format x "%H:%M" # Format für die Achsenbeschriftung
set yrange [-19:26] # die y-Achse geht von:bis
set zeroaxis # eine Null Linie
# Maximum und Minimum anzeigen
max_y = GPVAL_DATA_Y_MAX
set label 1 gprintf("Maximum = %g Grad/Celsius", max_y) at "2013.06.26_17:00:00",24 font "Times,12"
min_y = GPVAL_DATA_Y_MIN
set label 2 gprintf("Minimum = %g Grad/Celsius", min_y) at "2013.06.26_17:25:00",-15 font "Times,12"
set terminal png
set output "temperaturverlauf-kuehlschrank.png"plot "temperatur-kuehlschrank.txt" using 1:2 title "Zimmer Sensor" with lines, "" using 1:3 title "Sensor im Kühlschranki" with lines
set terminal aqua
replot
Diese Grafik liegen diese, mit dem Arduino gemessenen Werte zugrunde. Die Aussetzer in der Aufzeichnung rühren daher, das sich der MacBookAir nach einiger Zeit in den Sleep-Modus schaltet, dann kommen keine Daten aus der USB-Schnittstelle an. Da muss man sich dann noch was einfallen lassen.
Eine kurze Messung mit zwei an das Arduino-Board angeschlossene Temp.-Sensoren DS18B20 ergibt diese Daten.
Daraus läßt sich mit diesen gnuplot Befehlen
set title "Temperaturverlauf"
set ylabel "Temperatur in Grad/Celsius"
set xlabel "Messzeitpunkt"
set xdata time # x-Achse wird im Datums/Zeitformat skaliert
set timefmt "%Y.%m.%d_%H:%M:%S" # Format Zeitangaben yyyy.mm.dd_hh:mm:ss
set format x "%H:%M" # Format für die Achsenbeschriftung
set yrange [26:28] # die y-Achse geht von:bis
set terminal png
set output "temperaturverlauf.png"
plot "temperatur.log" using 1:2 title "Innen Sensor" with lines, "" using 1:3 title "Aussen Sensor DS18B20" with lines
diese Grafik plotten:
gnuplot zweier Temperatursensoren
Die Sensoren sind mit +-0,5 Grad Celsius bei -10 bis +85 Grad angegeben.
Die Differenz beider Werte ergibt mit diesen gnuplot Befehlen:
set title "Temperatur Differenz zweier Sensoren"
set ylabel "Temperatur Differenz in Grad/Celsius"
set xlabel "Messzeitpunkt"
set xdata time # x-Achse wird im Datums/Zeitformat skaliert
set timefmt "%Y.%m.%d_%H:%M:%S" # Format Zeitangaben yyyy.mm.dd_hh:mm:ss
set format x "%H:%M" # Format für die Achsenbeschriftung
set yrange [-1:1] # die y-Achse geht von:bis
set zeroaxis # die 0 Linie
set terminal png # erzeugt eine PNG Datei
set output "differenztemperaturverlauf.png" # Name der PNG Datei
plot "temperatur.log" using 1:($2-$3) title "Temperatur-Differenz" with lines
set terminal aqua # wieder auf Terminal
replot # nochmal in Terminal plotten
folgendes Ergebnis.
Differenz zweier Temperaturmessungen
Mit welchem gnuplot Befehl bekomme ich eine horizontale Linie bei 0,5 und -0,5 Grad hin, die mit min und max Beschriftet ist? Ok, hier die Lösung.
1. Auf den Arduino den „Hallo Welt“ Sketch laden.
void setup(){
Serial.begin(9600);
}
void loop(){
Serial.println("Hello world");
delay(1000);
}
2. Den RXTX-Treiber in Version >= 2.2pre2 laden. Die 1.7 Version macht mit Mac OS X 10.8.4 Probleme, es kommt die Meldung, das der Port belegt ist.
3. Die zwei Dateien aus dem entpackten Archiv librxtxSerial.jnilib und RXTXcomm.jar in das /Library/Java/Extensions Verzeichnis kopieren
4. Die RXTXcomm.jar dem Classpath des Projektes hinzufügen.
5. Im Testprogramm den PORT_NAMES „/dev/tty.usbserial-A501U7KD“ entsprechend setzen. Im Arduino-IDO Menü Werkzeuge-Serieller-Port schauen, wie er genau heißt.
6. SerialTest starten. „Hello World“ wird auf den Konsole ausgegeben. „Per Java über die Serielle-Schnittstelle auf den Arduino zugreifen mit dem Mac OS X 10.8.4“ weiterlesen
Habe heute einen One-Wire DS18B20 Temperatursensor erhalten und ihn mit dem Arduino Nano verbunden. Der Messbereich des Sensors beträgt von -55°C bis +125°C bei ± 0,5°C Genauigkeit.
Das Programm (8038 byte) gibt zuerst die eindeutige ID des Sensors aus, (28-A2-9D-8A-04-00-00-2B) und dann jede Sekunde den neuen Messwert:
/* TWTemp Version 1.0 vom 14.06.2013
8038 bytes
Thomas Wenzlaff http://www.wenzlaff.de
Temperature Sensor DS18B20 an Digitalen Port Pin 2 wie folgt verbunden Links=Masse, Mitte=Data, Rechts=+5V, 3300 to 4700 Ohm Widerstand von +5V nach Data.
Es wird erst die Adresse des 1-Wire-Device ausgegeben und dann wird die Temperaturmessung gestartet.